Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 4554 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 34910 | Θέμα: | 3 | |
Τελευταία Ενημέρωση: | 12-Μαρ-2023 | Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 4.2. Ανισώσεις 2ου Βαθμού | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Α' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 3 | ||
Κωδικός Θέματος: | 34910 | ||
Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 4.2. Ανισώσεις 2ου Βαθμού | ||
Τελευταία Ενημέρωση: 12-Μαρ-2023 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 3
α) Να λύσετε την ανίσωση \(x^{2}-4x+3<0\ \ \ \ (1)\).
(Μονάδες 13)
β) Αν η \((1)\) έχει λύσεις τους αριθμούς \(x\) για τους οποίους ισχύει \(1<x<3\) και οι αριθμοί \(α\), \(β\) είναι λύσεις της ανίσωσης \((1)\), να δείξετε ότι και ο αριθμός \(\dfrac{α+β}{2}\) είναι επίσης λύση της ανίσωσης \((1)\).
(Μονάδες 12)
ΛΥΣΗ
α) Το τριώνυμο \(x^{2}-4x+3\) έχει διακρίνουσα:
$$Δ=(-4)^{2}-4\cdot 1\cdot 3$$ $$=16-12=4$$
και ρίζες:
$$x_{\text{1,2}}=\dfrac{-(-4)\pm \sqrt{4}}{2\cdot 1}$$ $$=\dfrac{4\pm 2}{2}$$ $$=\begin{cases} \dfrac{4+2}{2}=3 \\ \dfrac{4-2}{2}=1 \end{cases}$$
Το πρόσημο του τριωνύμου για τις διάφορες τιμές του \(x\) φαίνεται στον παρακάτω πίνακα:
Από τον πίνακα προσήμων συμπεραίνουμε ότι:
$$x^{2}-4x+3 < 0 $$ $$\Leftrightarrow 1 < x < 3 $$
β) Για να είναι ο \(\dfrac{α+β}{2}\) λύση της ανίσωσης \((1)\) αρκεί να δείξουμε \(1<\dfrac{α+β}{2}<3\).
Έχουμε ότι:
$$\left. \array { 1<α<3 \cr 1<β<3 } \right\} \overset{(+)}{\Rightarrow} 2<α+β<6 $$ $$\overset{(:2)}{\Rightarrow} 1<\dfrac{α+β}{2}<3$$