Τράπεζα Θεμάτων

www.trapeza-thematon.gr

Τύπος Σχολείου: Γενικό Λύκειο Τάξη: Β' Λυκείου
Μάθημα: Μαθηματικά Προσανατολισμού Θέμα: 4
Κωδικός Θέματος: 21657 Ύλη: 3.4 Η Υπερβολή 3.5 Η Εξίσωση Αx²+Βy²+Γx+Δy+Ε=0
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Β' Λυκείου
Μάθημα: Μαθηματικά Προσανατολισμού
Θέμα: 4
Κωδικός Θέματος: 21657
Ύλη: 3.4 Η Υπερβολή 3.5 Η Εξίσωση Αx²+Βy²+Γx+Δy+Ε=0
Τελευταία Ενημέρωση: 10-Φεβ-2023
ΘΕΜΑ 4

Έστω υπερβολή \(C\) με κέντρο το \((0,0)\), εστίες πάνω στον άξονα \(xx'\) της οποίας το ορθογώνιο βάσης είναι τετράγωνο.

α) Να βρείτε:

  1. τις εξισώσεις των ασυμπτώτων της \(C\).
    (Μονάδες 6)

  2. την εκκεντρότητα της \(C\).
    (Μονάδες 6)

β) Αν η υπερβολή διέρχεται από το σημείο \((2,0)\) και \((ζ)\) τυχαίαευθεία παράλληλη σε κάποια εκ των ασύμπτωτων της \(C\) (που δεν ταυτίζεται με κάποια από αυτές),

  1. να δείξετε ότι η \((ζ)\) έχει ένα μόνο κοινό σημείο με την \(C\).
    (Μονάδες 8)

  2. είναι η ευθεία \((ζ)\) εφαπτόμενη της \(C\); Αιτιολογείστε την απάντησή σας.
    (Μονάδες 5)


Απάντηση Θέματος:

ΛΥΣΗ

α) Η υπερβολή \(C\) έχει κέντρο το \((0,0)\) και εστίες στον άξονα \(xx'\), οπότε θα έχει ασύμπτωτες της μορφής \(y=\dfrac{β}{α}x , y=-\dfrac{β}{α}x\). Αφού το ορθογώνιο βάσης είναι τετράγωνο, συμπεραίνουμε ότι \(α=β\) δηλαδή είναι ισοσκελής υπερβολή. Συνεπώς:

  1. οι εξισώσεις των ασυμπτώτων της υπερβολής \(C\) είναι \(y=x,y=-x\).
  2. για την εκκεντρότητα \(ε\) της \(C\) ισχύει ότι \(ε^{2}=1+(\dfrac{β}{α})^{2}=1+1=2\) και επειδή \(ε>0\) έχουμε τελικά ότι \(ε=\sqrt{2}\).

β) Αφού η \((ζ)\) είναι παράλληλη σε κάποια εκ των ασύμπτωτων της \(C\), θα έχει εξίσωση της μορφής \(y=x+κ\) ή \(y=-x+κ\) με \(κ≠0\). Η ισοσκελής υπερβολή \(C\) θα έχει εξίσωση της μορφής \(x^{2}-y^{2}=α^{2}\). Αφού διέρχεται από το σημείο \((2,0)\) έχουμε ότι:

$$2^{2}-0^{2}=α^{2}$$ $$\Leftrightarrow 4=α^{2}$$ $$\overset{α>0}{\Leftrightarrow }α=2$$

Το πλήθος των κοινών σημείων της \(C\) και της ευθείας \((ζ)\) είναι ίδιο με το πλήθος των λύσεων καθενός από τα συστήματα \(\begin{cases}x^{2} - y^{2} =4 \\ y=x+κ\end{cases}\) και \(\begin{cases}x^{2} - y^{2} =4 \\ y= - x+κ\end{cases}\).

Λύνουμε το 1ο σύστημα με αντικατάσταση της 2ης εξίσωσης στην 1η και έχουμε:

$$x^{2}-(x+κ)^{2}=4$$ $$\Leftrightarrow x^{2}-x^{2}-2xκ-κ^{2}=4$$ $$\Leftrightarrow -2xκ=4+κ^{2}$$ $$\overset{κ≠0}{\Leftrightarrow }x=-\dfrac{4+κ^{2}}{2κ}$$

και από τη 2η εξίσωση έχουμε ότι:

$$y=-\dfrac{4+κ^{2}}{2κ}+κ$$

Ομοίως λύνουμε το 2ο σύστημα με αντικατάσταση της 2ης εξίσωσης στην 1η και έχουμε:

$$x^{2}-(-x+κ)^{2}=4$$ $$\Leftrightarrow x^{2}-x^{2}+2xκ-κ^{2}=4$$ $$\Leftrightarrow 2xκ=4+κ^{2}$$ $$\overset{κ≠0}{\Leftrightarrow }x=\dfrac{4+κ^{2}}{2κ}$$

και από τη 2η εξίσωση έχουμε ότι:

$$y=-\dfrac{4+κ^{2}}{2κ}+κ$$

  1. Σε κάθε περίπτωση το σύστημα έχει μοναδική λύση που σημαίνει ότι η \((ζ)\) έχει ένα μόνο κοινό σημείο με την \(C\).

  2. Επειδή σε κάθε περίπτωση η μοναδική λύση του συστήματος προέκυψε από εξίσωση 1ου βαθμού και όχι από 2ου με διακρίνουσα \(0\), η ευθεία \((ζ)\) δεν είναι εφαπτόμενη της \(C\). Απλά την τέμνει σε ένα σημείο χωρίς όμως το σημείο αυτό να είναι σημείο επαφής. Δηλαδή η \((ζ)\) διαπερνά τη \(C\).

Σημείωση: το παραπάνω συμπέρασμα ισχύει για κάθε υπερβολή και ευθεία παράλληλη σε κάποια από τις ασύμπτωτες και όχι μόνο για τις ισοσκελείς.

Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida).