Τράπεζα Θεμάτων
www.trapeza-thematon.gr
Τύπος Σχολείου: | Γενικό Λύκειο | Τάξη: | Α' Λυκείου |
---|---|---|---|
Μάθημα: | Άλγεβρα | Θέμα: | 2 |
Κωδικός Θέματος: | 34156 | Ύλη: | 5.3. Γεωμετρική πρόοδος |
Τύπος Σχολείου: | Γενικό Λύκειο |
---|---|
Τάξη: | Α' Λυκείου |
Μάθημα: | Άλγεβρα |
Θέμα: | 2 |
Κωδικός Θέματος: | 34156 |
Ύλη: | 5.3. Γεωμετρική πρόοδος |
Τελευταία Ενημέρωση: 10-Μαΐ-2023 |
ΘΕΜΑ 2
Δίνεται η γεωμετρική πρόοδος \((α_ν)\), για την οποία ισχύει \(\dfrac{α_{5}}{α_{2}}=27\).
α) Να δείξετε ότι ο λόγος της προόδου είναι \(λ = 3.\)
(Μονάδες 10)
β) Αν το άθροισμα των τεσσάρων πρώτων όρων της προόδου είναι \(200\), να βρείτε τον πρώτο όρο \(α_{1}\).
(Μονάδες 15)
Απάντηση Θέματος:
α) Είναι:
\begin{align} & \dfrac{α_{5}}{α_{2}} = 27 \\ \Leftrightarrow & \dfrac{α_{1}λ^{5-1}}{α_{1}λ^{2-1}} = 27 \\ \Leftrightarrow & \dfrac{λ^{4}}{λ} = 27 \\ \Leftrightarrow & λ^3 = 27 \\ \Leftrightarrow & λ^3 = 3^3\\ \Leftrightarrow & λ = 3 \end{align}
β) Ισχύει ότι:
\begin{align} & S_4 = 200 \\ \Leftrightarrow & α_1 \dfrac{λ^{4}-1}{λ-1} = 200 \\ \Leftrightarrow & α_1 \dfrac{3^{4}-1}{3-1} = 200 \\ \Leftrightarrow & α_1 \dfrac{81-1}{2} = 200 \\ \Leftrightarrow & 40α_1 = 200 \\ \Leftrightarrow & α_1 = 5 \end{align}
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida).