Τράπεζα Θεμάτων
www.trapeza-thematon.gr
Τύπος Σχολείου: | Γενικό Λύκειο | Τάξη: | Α' Λυκείου |
---|---|---|---|
Μάθημα: | Άλγεβρα | Θέμα: | 2 |
Κωδικός Θέματος: | 35299 | Ύλη: | 5.2. Αριθμητική πρόοδος |
Τύπος Σχολείου: | Γενικό Λύκειο |
---|---|
Τάξη: | Α' Λυκείου |
Μάθημα: | Άλγεβρα |
Θέμα: | 2 |
Κωδικός Θέματος: | 35299 |
Ύλη: | 5.2. Αριθμητική πρόοδος |
Τελευταία Ενημέρωση: 17-Μαΐ-2023 |
ΘΕΜΑ 2
Σε ένα γυμναστήριο με \(10\) σειρές καθισμάτων, η πρώτη σειρά έχει \(120\) καθίσματα και κάθε σειρά έχει \(20\) καθίσματα περισσότερα από την προηγούμενη της.
α) Να εκφράσετε με μια αριθμητική πρόοδο το πλήθος των καθισμάτων της \(ν\)-οστής σειράς.
(Μονάδες 9)
β) Πόσα καθίσματα έχει η τελευταία σειρά;
(Μονάδες 8)
γ) Πόσα καθίσματα έχει το γυμναστήριο;
(Μονάδες 8)
Απάντηση Θέματος:
Λύση
α) Από τα δεδομένα της άσκησης είναι \(α_{1}=120\) και \(ω=20\). Τότε:
$$α_{ν}=α_{1}+(ν-1)ω $$ $$\Leftrightarrow α_{ν}=120+(ν-1)20 $$ $$\Leftrightarrow α_{ν}=100+20ν$$
β) Η τελευταία σειρά έχει:
$$α_{10}=100+20\cdot 10 $$ $$\Leftrightarrow α_{10}=100+200 $$ $$\Leftrightarrow α_{10}=300\ \text{καθίσματα}$$
γ) Το γυμναστήριο έχει συνολικά:
$$S_{10}=\dfrac{10}{2}(α_{1}+α_{10})$$ $$=5(120+300)$$ $$=5\cdot 420$$ $$=2100\ \text{καθίσματα}$$
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida).