Τράπεζα Θεμάτων
www.trapeza-thematon.gr
Τύπος Σχολείου: | Γενικό Λύκειο | Τάξη: | Α' Λυκείου |
---|---|---|---|
Μάθημα: | Άλγεβρα | Θέμα: | 2 |
Κωδικός Θέματος: | 35413 | Ύλη: | 3.3. Εξισώσεις 2ου Βαθμού 6.2. Γραφική Παράσταση Συνάρτησης |
Τύπος Σχολείου: | Γενικό Λύκειο |
---|---|
Τάξη: | Α' Λυκείου |
Μάθημα: | Άλγεβρα |
Θέμα: | 2 |
Κωδικός Θέματος: | 35413 |
Ύλη: | 3.3. Εξισώσεις 2ου Βαθμού 6.2. Γραφική Παράσταση Συνάρτησης |
Τελευταία Ενημέρωση: 17-Μαΐ-2023 |
ΘΕΜΑ 2
Δίνεται η συνάρτηση \(f\), με τύπο \(f(x)=\dfrac{1}{x^{2}-1}\).
α) Να βρείτε το πεδίο ορισμού της συνάρτησης.
(Μονάδες 13)
β) Να βρείτε τις δυνατές τιμές του πραγματικού αριθμού \(α\), ώστε το σημείο \(Μ\left(α,\dfrac{1}{8}\right)\) να ανήκει στη γραφική παράσταση της συνάρτησης \(f\).
(Μονάδες 12)
Απάντηση Θέματος:
ΛΥΣΗ
α) Πρέπει:
$$x^{2}-1\ne 0 $$ $$\Leftrightarrow (x-1)(x+1)\ne 0 $$ $$\Leftrightarrow (x-1\ne 0\ \ \text{και}\ \ x+1\ne 0) $$ $$\Leftrightarrow (x\ne 1\ \ \text{και}\ \ x\ne -1)$$
Άρα το πεδίο ορισμού της \(f\) είναι το \(Α=\mathbb{R}-\{-1,1\}\).
β) Το σημείο \(Μ\left(α,\dfrac{1}{8}\right)\) ανήκει στη γραφική παράσταση της \(f\) αν και μόνο αν:
$$f(α)=\dfrac{1}{8} $$ $$\Leftrightarrow \dfrac{1}{α^{2}-1}=\dfrac{1}{8} $$ $$\Leftrightarrow α^{2}-1=8 $$ $$\Leftrightarrow α^{2}-9=0 $$ $$\Leftrightarrow (α-3)(α+3)=0 $$ $$\Leftrightarrow (α-3=0\ \ \text{ή}\ \ α+3=0) $$ $$\Leftrightarrow (α=3\ \ \text{ή}\ \ α=-3)$$
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida).