Τράπεζα Θεμάτων
www.trapeza-thematon.gr
Τύπος Σχολείου: | Γενικό Λύκειο | Τάξη: | Α' Λυκείου |
---|---|---|---|
Μάθημα: | Άλγεβρα | Θέμα: | 2 |
Κωδικός Θέματος: | 36777 | Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.1. Ανισώσεις 1ου Βαθμού |
Τύπος Σχολείου: | Γενικό Λύκειο |
---|---|
Τάξη: | Α' Λυκείου |
Μάθημα: | Άλγεβρα |
Θέμα: | 2 |
Κωδικός Θέματος: | 36777 |
Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.1. Ανισώσεις 1ου Βαθμού |
Τελευταία Ενημέρωση: 19-Μαΐ-2023 |
ΘΕΜΑ 2
Δίνονται δύο ευθύγραμμα τμήματα με μήκη \(x\) και \(y\), για τα οποία ισχύουν:
$$|x-3|\le 2\ \ \text{και}\ \ |y-6|\le 4$$
α) Να αποδείξετε ότι: \(1\le x\le 5\) και \(2\le y\le 10\).
(Μονάδες 12)
β) Να βρείτε την μικρότερη και τη μεγαλύτερη τιμή που μπορεί να πάρει η περίμετρος ενός ορθογωνίου με διαστάσεις \(2x\) και \(y\).
(Μονάδες 13)
Απάντηση Θέματος:
Λύση
α) Ισχύει ότι:
$$|x−3|\le 2 $$ $$\Leftrightarrow −2\le x−3\le 2 $$ $$\Leftrightarrow −2+3\le x\le 2+3 $$ $$\Leftrightarrow 1\le x\le 5$$
$$|y−6|\le 4 $$ $$\Leftrightarrow −4\le y−6\le 4 $$ $$\Leftrightarrow −4+6\le y\le 4+6 $$ $$\Leftrightarrow 2\le y\le 10$$
β) Η περίμετρος ενός ορθογωνίου με διαστάσεις \(2x\) και \(y\) είναι \(Π=4x+2y\).
Από το α) ερώτημα έχουμε:
$$1\le x\le 5 $$ $$\Leftrightarrow 1\cdot 4\le 4x\le 5\cdot 4 $$ $$\Leftrightarrow 4\le 4x\le 20\ \ \ \ (1)$$
$$2\le y\le 10 $$ $$\Leftrightarrow 2\cdot 2\le 2y\le 10\cdot 2 $$ $$\Leftrightarrow 4\le 2y\le 20\ \ \ \ (2)$$
Προσθέτοντας κατά μέλη τις ανισότητες \((1)\) και \((2)\) έχουμε:
$$4+4\le 4x+2y\le 20+20 $$ $$\Leftrightarrow 8\le Π\le 40$$
Συνεπώς, η ελάχιστη τιμή που μπορεί να πάρει η περίμετρος είναι \(8\), όταν \(x=1\), \(y=2\) και η μέγιστη τιμή που μπορεί να πάρει η περίμετρος είναι \(40\), όταν \(x=5\), \(y=10\).
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida).