Τράπεζα Θεμάτων
www.trapeza-thematon.gr
Τύπος Σχολείου: | Γενικό Λύκειο | Τάξη: | Α' Λυκείου |
---|---|---|---|
Μάθημα: | Άλγεβρα | Θέμα: | 2 |
Κωδικός Θέματος: | 36889 | Ύλη: | 3.1. Εξισώσεις 1ου Βαθμού 6.1. Η Έννοια της Συνάρτησης 6.2. Γραφική Παράσταση Συνάρτησης |
Τύπος Σχολείου: | Γενικό Λύκειο |
---|---|
Τάξη: | Α' Λυκείου |
Μάθημα: | Άλγεβρα |
Θέμα: | 2 |
Κωδικός Θέματος: | 36889 |
Ύλη: | 3.1. Εξισώσεις 1ου Βαθμού 6.1. Η Έννοια της Συνάρτησης 6.2. Γραφική Παράσταση Συνάρτησης |
Τελευταία Ενημέρωση: 18-Μαΐ-2023 |
ΘΕΜΑ 2
Δίνεται η συνάρτηση \(f(x)=x^{2}+2x-15\), \(x\in \mathbb{R}\).
α) Να υπολογίσετε το άθροισμα: \(f(-5)+f(0)+f(3)\).
(Μονάδες 10)
β) Να βρείτε τα κοινά σημεία της γραφικής της παράστασης της \(f\) με τους άξονες.
(Μονάδες 15)
Απάντηση Θέματος:
ΛΥΣΗ
α) Έχουμε:
$$f(-5)=(-5)^{2}+2\cdot (-5)-15=25-10-15=0$$
$$f(0)=0^{2}+2\cdot 0-15=-15$$
$$f(3)=3^{2}+2\cdot 3-15=9+6-15=0$$
Άρα:
$$f(-5)+f(0)+f(3)=0-15+0=-15$$
β) Για \(x=0\), έχουμε από το α) ερώτημα \(f(0)=-15\). Άρα η γραφική παράσταση της \(f\) τέμνει τον \(y'y\) άξονα στο σημείο \((0,-15)\).
Από το α) ερώτημα παρατηρούμε ότι \(f(-5)=0\) και \(f(3)=0\). Άρα η γραφική παράσταση της \(f\) τέμνει τον \(x'x\) άξονα στα σημεία \((-5,0)\) και \((3,0)\).
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida).