Τράπεζα Θεμάτων
www.trapeza-thematon.gr
Τύπος Σχολείου: | Γενικό Λύκειο | Τάξη: | Α' Λυκείου |
---|---|---|---|
Μάθημα: | Άλγεβρα | Θέμα: | 2 |
Κωδικός Θέματος: | 37195 | Ύλη: | 2.4. Ρίζες Πραγματικών Αριθμών 4.1. Ανισώσεις 1ου Βαθμού |
Τύπος Σχολείου: | Γενικό Λύκειο |
---|---|
Τάξη: | Α' Λυκείου |
Μάθημα: | Άλγεβρα |
Θέμα: | 2 |
Κωδικός Θέματος: | 37195 |
Ύλη: | 2.4. Ρίζες Πραγματικών Αριθμών 4.1. Ανισώσεις 1ου Βαθμού |
Τελευταία Ενημέρωση: 07-Μαρ-2024 |
ΘΕΜΑ 2
Δίνεται η παράσταση \(A=\sqrt{x-4}+\sqrt{6-x}\).
α) Για ποιες τιμές του \(x\) ορίζεται η παράσταση \(Α\); Να αιτιολογήσετε την απάντηση σας και να γράψετε το σύνολο των δυνατών τιμών του \(x\) σε μορφή διαστήματος.
(Μονάδες 13)
β) Για \(x=5\), να αποδείξετε ότι: \(A^{2}+A-6=0\).
(Μονάδες 12)
Απάντηση Θέματος:
α) Πρέπει:
$$\begin{cases} x-4\ge 0 \\ \text{και } 6-x\ge 0 \end{cases}$$ $$\Leftrightarrow \begin{cases} x\ge 4 \\ \text{και } -x\ge -6 \end{cases}$$ $$\Leftrightarrow \begin{cases} x\ge 4 \\ \text{και } x\le 6 \end{cases}$$ $$\Leftrightarrow 4\le x\le 6$$ $$\Leftrightarrow x\in [4,6]$$
β) Για \(x=5\) είναι:
$$A=\sqrt{5-4}+\sqrt{6-5}=\sqrt{1}+\sqrt{1}=1+1=2$$
Επομένως
$$A^{2}+A-6=2^{2}+2-6=4+2-6=0$$
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida).