Τράπεζα Θεμάτων

www.trapeza-thematon.gr

Τύπος Σχολείου: Γενικό Λύκειο Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα Θέμα: 4
Κωδικός Θέματος: 37204 Ύλη: 5.2. Αριθμητική πρόοδος
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 4
Κωδικός Θέματος: 37204
Ύλη: 5.2. Αριθμητική πρόοδος
Τελευταία Ενημέρωση: 06-Νοε-2023
ΘΕΜΑ 4

Σε μια αίθουσα θεάτρου με 20 σειρές καθισμάτων, το πλήθος των καθισμάτων κάθε σειράς αυξάνει καθώς ανεβαίνουμε από σειρά σε σειρά, κατά τον ίδιο πάντα αριθμό καθισμάτων. Η 1η σειρά έχει 16 καθίσματα και η 7η σειρά έχει 28 καθίσματα.

α) Να δείξετε ότι οι αριθμοί που εκφράζουν το πλήθος των καθισμάτων κάθε σειράς είναι διαδοχικοί όροι αριθμητικής προόδου. Να βρείτε τον πρώτο όρο της και τη διαφορά αυτής της προόδου.
(Μονάδες 05)

β) Να βρείτε τον γενικό όρο της προόδου.
(Μονάδες 04)

γ) Πόσα καθίσματα έχει όλο το θέατρο;
(Μονάδες 05)

δ) Αν στην 1η σειρά της αίθουσας αυτής υπάρχουν 6 κενά καθίσματα, στη 2η υπάρχουν 9 κενά καθίσματα, στην 3η υπάρχουν 12 κενά καθίσματα και γενικά τα κενά καθίσματα κάθε σειράς, από τη 2η και μετά, είναι κατά 3 περισσότερα από αυτά της προηγούμενης, τότε:

  1. Να βρείτε από ποια σειρά και πέρα θα υπάρχουν μόνο κενά καθίσματα.
    (Μονάδες 05)
  2. Να βρείτε πόσοι είναι οι θεατές.
    (Μονάδες 06)

Απάντηση Θέματος:

ΛΥΣΗ

α) Επειδή το πλήθος των καθισμάτων της κάθε σειράς αυξάνει καθώς ανεβαίνουμε από σειρά σε σειρά κατά τον ίδιο πάντα αριθμό καθισμάτων ω, οι αριθμοί που εκφράζουν το πλήθος των καθισμάτων κάθε σειράς, είναι διαδοχικοί όροι αριθμητικής προόδου (αν) με α1=16 και διαφορά ω.
Είναι:

α7=28 α1+(71)ω=28 16+6ω=28 6ω=12 ω=2

Άρα α1=16 και ω=2.

β) Έχουμε:

αν=α1+(ν1)ω αν=16+(ν1)2 αν=16+2ν2 αν=2ν+14 με 1ν20

γ) Το πλήθος των καθισμάτων του θεάτρου είναι:

S20=202[2α1+(201)ω] S20=10(216+192) S20=10(32+38) S20=1070 S20=700

δ) Ο αριθμός των κενών καθισμάτων σε κάθε σειρά είναι αριθμητική πρόοδος (βν) με β1=6 και ω=3. Ο ν-οστός όρος που εκφράζει το πλήθος των κενών καθισμάτων είναι:

βν=β1+(ν1)ω βν=6+(ν1)3 βν=6+3ν3 βν=3ν+3

Άρα βν=3ν+3 με 1ν11 (διότι τα κενά καθίσματα δε μπορεί να είναι περισσότερα από τα καθίσματα της κάθε σειράς, δηλαδή πρέπει βνανν11)

  1. Όλα τα καθίσματα θα είναι κενά της ν-οστής σειράς, όταν:

    βν=αν 3ν+3=2ν+14 ν=11

    Άρα από την 11η σειρά μέχρι την 20η, όλα τα καθίσματα είναι κενά.

  2. Το πλήθος των κενών καθισμάτων στις 10 πρώτες σειρές είναι:

    S10=102[2β1+(101)ω] S10=5(26+93) S10=539 S10=195

    Το πλήθος των καθισμάτων στις πρώτες 10 σειρές είναι:

    S10=102[2α1+(101)ω] S10=5(216+92) S10=550 S10=250

    Ο αριθμός των θεατών που κάθονται στις πρώτες 10 θέσεις είναι:

    S10S10=250195=55

    Αυτός είναι και ο συνολικός αριθμός θεατών, αφού από την 11η σειρά και μετά όλα τα καθίσματα είναι κενά.

Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida).