Τράπεζα Θεμάτων
www.trapeza-thematon.gr
Τύπος Σχολείου: | Γενικό Λύκειο | Τάξη: | Α' Λυκείου |
---|---|---|---|
Μάθημα: | Άλγεβρα | Θέμα: | 2 |
Κωδικός Θέματος: | 38203 | Ύλη: | 3.3. Εξισώσεις 2ου Βαθμού 4.2. Ανισώσεις 2ου Βαθμού |
Τύπος Σχολείου: | Γενικό Λύκειο |
---|---|
Τάξη: | Α' Λυκείου |
Μάθημα: | Άλγεβρα |
Θέμα: | 2 |
Κωδικός Θέματος: | 38203 |
Ύλη: | 3.3. Εξισώσεις 2ου Βαθμού 4.2. Ανισώσεις 2ου Βαθμού |
Τελευταία Ενημέρωση: 10-Οκτ-2024 |
ΘΕΜΑ 2
α) Να λύσετε την εξίσωση : \(x^{2}-25=0\).
(Μονάδες 7)
β) Να λύσετε την ανίσωση : \(x^{2}-36\le 0\).
(Μονάδες 9)
γ) Να εξετάσετε αν οι λύσεις της εξίσωσης του α) ερωτήματος είναι και λύσεις της ανίσωσης του β) ερωτήματος.
(Μονάδες 9)
Απάντηση Θέματος:
ΛΥΣΗ
α) Έχουμε ισοδύναμα:
$$x^{2}-25=0$$ $$\Leftrightarrow (x-5)(x+5)=0$$ $$\Leftrightarrow (x-5)=0 \text{ ή } (x+5)=0$$ $$\Leftrightarrow x=5 \text{ ή } x=-5$$
β) Οι ρίζες του τριωνύμου \(x^{2}-36\) είναι \(x=-6,x=6\).
Στον παρακάτω πίνακα έχουμε το πρόσημο του τριωνύμου:
Άρα η ανίσωση \(x^{2}-36\le 0\) αληθεύει για \(x \in [-6,6]\).
γ) Παρατηρούμε ότι \(-5\in [-6,6]\) και \(5\in [-6,6]\), άρα οι λύσεις της εξίσωσης του α) ερωτήματος είναι και λύσεις της ανίσωσης του β) ερωτήματος.
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida).