Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 6452 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 37171 Θέμα: 2
Τελευταία Ενημέρωση: 19-Μαΐ-2023 Ύλη: 2.1. Οι Πράξεις και οι Ιδιότητές τους 3.3. Εξισώσεις 2ου Βαθμού
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 2
Κωδικός Θέματος: 37171
Ύλη: 2.1. Οι Πράξεις και οι Ιδιότητές τους 3.3. Εξισώσεις 2ου Βαθμού
Τελευταία Ενημέρωση: 19-Μαΐ-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 2

Αν α, β πραγματικοί αριθμοί για τους οποίους ισχύουν:

α+β=2  και  α2β+αβ2=30

α) Να αποδείξετε ότι: αβ=15.
(Μονάδες 10)

β) Να κατασκευάσετε εξίσωση δευτέρου βαθμού με ρίζες τους αριθμούς α, β και να τους βρείτε.
(Μονάδες 15)

Λύση

α) Είναι:

α2β+αβ2=30 αβ(α+β)=30 αβ2=30 αβ=15

β) Η ζητούμενη εξίσωση μπορεί να είναι της μορφής:

x2Sx+P=0

με:

S=α+β=2  και  P=αβ=15

Τελικά, μία ζητούμενη εξίσωση είναι η:

x22x15=0

Το τριώνυμο x22x15 έχει διακρίνουσα:

Δ=β24αγ =(2)241(15) =4+60=64>0

Οι ρίζες της εξίσωσης είναι:

x1,2=β±Δ2a =(2)±6421 =2±82=5  ή  3

Άρα είναι α=5 και β=3 ή α=3 και β=5.