Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 6542 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 37205 Θέμα: 4
Τελευταία Ενημέρωση: 01-Νοε-2023 Ύλη: 5.2. Αριθμητική πρόοδος 5.3. Γεωμετρική πρόοδος
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 4
Κωδικός Θέματος: 37205
Ύλη: 5.2. Αριθμητική πρόοδος 5.3. Γεωμετρική πρόοδος
Τελευταία Ενημέρωση: 01-Νοε-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 4

Εξαιτίας ενός ατυχήματος σε διυλιστήριο πετρελαίου, διαρρέει στη θάλασσα πετρέλαιο που στο τέλος της 1ης ημέρας καλύπτει 3 τετραγωνικά μίλια (τ.μ.), στο τέλος της 2ης ημέρας καλύπτει 6 τ.μ, στο τέλος της 3ης ημέρας καλύπτει 12 τ.μ. και γενικά εξαπλώνεται έτσι ώστε στο τέλος κάθε ημέρας να καλύπτει επιφάνεια διπλάσια από αυτήν που κάλυπτε την προηγούμενη.

α) Να βρείτε την επιφάνεια της θάλασσας που θα καλύπτει το πετρέλαιο στο τέλος της 5ης ημέρας μετά από το ατύχημα.
(Μονάδες 7)

β) Πόσες ημέρες μετά από τη στιγμή του ατυχήματος το πετρέλαιο θα καλύπτει 768 τ.μ.;
(Μονάδες 9)

γ) Στο τέλος της 9ης ημέρας επεμβαίνει ο κρατικός μηχανισμός και αυτομάτως σταματάει η εξάπλωση του πετρελαίου. Στο τέλος της επόμενης ημέρας η επιφάνεια που καλύπτει το πετρέλαιο έχει μειωθεί κατά 6 τ.μ. και συνεχίζει να μειώνεται κατά 6 τ.μ. την ημέρα. Να βρείτε πόσες ημέρες μετά από τη στιγμή του ατυχήματος η θαλάσσια επιφάνεια που καλύπτεται από το πετρέλαιο θα έχει περιοριστεί στα 12 τ.μ.
(Μονάδες 9)

ΛΥΣΗ

Η επιφάνεια σε τετραγωνικά μίλια που καλύπτει το πετρέλαιο στο τέλος κάθε ημέρας, είναι όροι γεωμετρικής προόδου με α1=3 και λ=2. Στο τέλος της ν-οστής ημέρας θα έχει καλυφθεί επιφάνεια αν=α1λ1 τετραγωνικά μίλια (τ.μ.).

α) Στο τέλος της 6ης ημέρας θα έχει καλυφθεί επιφάνεια:

α5=3251 =324 =316=48 τ.μ.

β) Δεδομένο είναι το αν=768 και ζητούμενο είναι το ν. Έχουμε ισοδύναμα:

αν=768 32ν1=768 2ν1=256 2ν1=28 ν1=8 ν=9

Οπότε στο τέλος της 9ης ημέρας θα έχει καλυφθεί από πετρέλαιο θαλάσσια επιφάνεια 768 τ.μ.

γ) Στο τέλος της 10ης ημέρας η επιφάνεια της θάλασσας που έχει καλυφθεί από πετρέλαιο είναι 7686=762 τ.μ. και κάθε επόμενη ημέρα θα μειώνεται κατά 6 τ.μ. Άρα η επιφάνεια σε τετραγωνικά μίλια που θα καλύπτει εφεξής το πετρέλαιο στο τέλος κάθε ημέρας, είναι όροι αριθμητικής προόδου (βν) με β1=762 και ω=6.

Δεδομένο είναι ότι βν=12 και ζητούμενο είναι το ν. Έχουμε ισοδύναμα:

βν=762 762+(ν1)(6)=12 6ν=756 ν=126

Συνεπώς στο τέλος της 126ης ημέρας μετά από την κρατική παρέμβαση και συνολικά στο τέλος της 9+126=135ης ημέρας μετά από τη στιγμή του ατυχήματος η θαλάσσια επιφάνεια που καλύπτεται από πετρέλαιο θα έχει περιοριστεί στα 12 τ.μ.