Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Έναρξη από 2 Σεπτεμβρίου
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 4993 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 33893 | Θέμα: | 4 | |
Τελευταία Ενημέρωση: | 03-Νοε-2023 | Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.1. Ανισώσεις 1ου Βαθμού | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Α' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 4 | ||
Κωδικός Θέματος: | 33893 | ||
Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.1. Ανισώσεις 1ου Βαθμού | ||
Τελευταία Ενημέρωση: 03-Νοε-2023 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 4
α) Να βρείτε τους πραγματικούς αριθμούς \(x\) για τους οποίους ισχύει \(|x-4|<2\).
(Μονάδες 7)
β) Θεωρούμε πραγματικό αριθμό \(x\) του οποίου η απόσταση από το \(4\) πάνω στο άξονα των πραγματικών είναι μικρότερη από \(2\).
Να δείξετε ότι \(3x-4>0\).
(Μονάδες 5)Να αποδείξετε ότι η απόσταση του τριπλάσιου του αριθμού \(x\) από το \(4\) είναι μεγαλύτερη του \(2\) και μικρότερη του \(14\).
(Μονάδες 5)Να βρείτε μεταξύ ποιων τιμών κυμαίνεται η τιμή της απόστασης του \(3x\) από το \(19\).
(Μονάδες 8)
ΛΥΣΗ
α) Έχουμε ισοδύναμα:
$$ |x-4|<2 $$ $$\Rightarrow -2 < x-4 < 2$$ $$\Rightarrow 4-2 < x < 2+4$$ $$\Rightarrow 2 < x < 6$$
Άρα \(x\in (2,6)\).
β) Πάνω στο άξονα των πραγματικών αριθμών η απόσταση του \(x\) από το \(4\) είναι μικρότερη από \(2\), δηλαδή:
Άρα \(2<x<6\).
Έχουμε:
$$2 < x < 6$$ $$\Rightarrow 2\cdot 3 < 3x < 6\cdot 3$$ $$\Rightarrow 6 < 3x < 18$$ $$\Rightarrow 6-4 < 3x-4 < 18-4$$ $$\Rightarrow 2 < 3x-4 < 14$$
και συνεπώς \(3x-4>0\).
Θα δείξουμε ότι \(2<d(3x,4)<14\).
Ισχύει ότι \(d(3x,4)=|3x-4|\overset{(i)}{=}3x-4\). Από το βi) ερώτημα \(2<3x-4<14\), οπότε \(2<d(3x,4)<14\).
Η απόσταση του \(3x\) από το \(19\) συμβολίζεται \(d(3x,19)=|3x-19|\).
Από το βi) ερώτημα έχουμε \(2<3x-4<14\) οπότε αφαιρούμε από τα μέλη της ανίσωσης \(15\) και έχουμε: \(-13<3x-19<-1\), δηλαδή \(3x-19<0\). Οπότε \(d(3x,19)=|3x-19|=-3x+19\).
Έχουμε \(-13<3x-19<-1\), δηλαδή \(13>-3x+19>1\) οπότε \(1<d(3x,19)<13\).