Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Σχολικό Έτος 2024-2025: Έναρξη από 2 Σεπτεμβρίου
Σχολικό Έτος 2024-2025:
Έναρξη από 2 Σεπτεμβρίου
Πληροφορίες
Έναρξη από 2 Σεπτεμβρίου
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 4097 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 34871 | Θέμα: | 2 | |
Τελευταία Ενημέρωση: | 13-Μαΐ-2023 | Ύλη: | 3.1. Εξισώσεις 1ου Βαθμού 5.2. Αριθμητική πρόοδος | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Α' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 2 | ||
Κωδικός Θέματος: | 34871 | ||
Ύλη: | 3.1. Εξισώσεις 1ου Βαθμού 5.2. Αριθμητική πρόοδος | ||
Τελευταία Ενημέρωση: 13-Μαΐ-2023 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 2
α) Να βρείτε τον πραγματικό αριθμό \(x\), ώστε οι αριθμοί \(x+2,\ x+1,\ 3x+2\), με τη σειρά που δίνονται, να είναι διαδοχικοί όροι αριθμητικής προόδου.
(Μονάδες 13)
β) Για \(x=-1\), να βρείτε τη διαφορά \(ω\) της παραπάνω αριθμητικής προόδου.
(Μονάδες 12)
α) Οι αριθμοί \(x+2, x+1, 3x+2\), με τη σειρά που δίνονται, είναι διαδοχικοί όροι αριθμητικής προόδου αν και μόνο αν
$$2(x+1)=(3x+2)+(x+2)$$
οπότε ισοδύναμα έχουμε:
$$2x+2=4x+4$$ $$\Leftrightarrow -2x=2$$ $$\Leftrightarrow x=-1$$
β) Για \(x=-1\), οι διαδοχικοί όροι της προόδου είναι \(-1+2, -1+1, 3\cdot (-1)+2\), δηλαδή \(1,\ 0,\ -1\).
Η διαφορά της αριθμητικής προόδου είναι: \(ω=0-1=-1\).