Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Σχολικό Έτος 2024-2025: Έναρξη από 2 Σεπτεμβρίου
Σχολικό Έτος 2024-2025:
Έναρξη από 2 Σεπτεμβρίου
Πληροφορίες
Έναρξη από 2 Σεπτεμβρίου
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 8210 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 35412 | Θέμα: | 2 | |
Τελευταία Ενημέρωση: | 18-Μαΐ-2023 | Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Α' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 2 | ||
Κωδικός Θέματος: | 35412 | ||
Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού | ||
Τελευταία Ενημέρωση: 18-Μαΐ-2023 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 2
Για κάθε πραγματικό αριθμό \(x\) με την ιδιότητα \(5 < x < 10\),
α) να γράψετε τις παραστάσεις \(|x-5|\) και \(|x-10|\) χωρίς τις απόλυτες τιμές.
(Μονάδες 10)
β) να υπολογίσετε την τιμή της παράστασης:
$$Α=\dfrac{|x-5|}{x-5}+\dfrac{|x-10|}{x-10}$$
(Μονάδες 15)
ΛΥΣΗ
α) Ισχύει ότι:
$$5 < x < 10 $$ $$\Leftrightarrow (5 < x\ \ \text{και}\ \ x < 10) $$ $$\Leftrightarrow (0 < x-5\ \ \text{και}\ \ x-10 < 0)$$
Τότε:
$$|x-5|=x-5$$
και:
$$|x-10|=-(x-10)$$
β) Είναι:
$$Α=\dfrac{|x-5|}{x-5}+\dfrac{|x-10|}{x-10}$$ $$=\dfrac{x-5}{x-5}+\dfrac{-(x-10)}{x-10}$$ $$=1+(-1)=0$$