Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Είστε Μαθηματικός;
Ελάτε στην ομάδα του ΜΕΘΟΔΙΚΟΥ
Ελάτε στην ομάδα του ΜΕΘΟΔΙΚΟΥ
Ευκαιρίες Απασχόλησης
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 7100 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 37199 | Θέμα: | 2 | |
Τελευταία Ενημέρωση: | 12-Μαρ-2024 | Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.4. Ρίζες Πραγματικών Αριθμών | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Α' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 2 | ||
Κωδικός Θέματος: | 37199 | ||
Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.4. Ρίζες Πραγματικών Αριθμών | ||
Τελευταία Ενημέρωση: 12-Μαρ-2024 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 2
Δίνονται οι αριθμοί: \(A=(\sqrt{2})^{6}\) και \(B=(\sqrt[3]{2})^{6}\).
α) Να δείξετε ότι: \(A-B=4\).
(Μονάδες 13)
β) Να δείξετε ότι: \(1 < \sqrt[3]{2} < \sqrt{2}\).
(Μονάδες 12)
α) Είναι:
$$\begin{align} A-B & =(\sqrt{2})^{6}-(\sqrt[3]{2})^{6}\\ & =\Big[ (\sqrt{2})^{2} \big]^{3}-\Big[ (\sqrt[3]{2})^{3} \Big]^{2}\\ & =2^{3}-2^{2}\\ & =8-4 \\ & =4\end{align}$$
β) Ισχύει ότι:
$$1\lt 2$$ $$\Leftrightarrow \sqrt[3]{1} \lt \sqrt[3]{2}$$ $$\Leftrightarrow 1\lt \sqrt[3]{2} \ \ \ \ (1)$$
Από το (α) ερώτημα:
$$A-B=4>0$$ $$\Leftrightarrow A>B$$ $$\Leftrightarrow (\sqrt{2})^{6}>(\sqrt[3]{2})^{6}$$ $$\Leftrightarrow \sqrt{2}>\sqrt[3]{2} \ \ \ \ (2)$$
Άρα από \((1)\) και \((2)\) έχουμε:
$$1\lt \sqrt[3]{2}\lt \sqrt{2}$$