Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 6370 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 37206 Θέμα: 4
Τελευταία Ενημέρωση: 27-Σεπ-2023 Ύλη: 3.3. Εξισώσεις 2ου Βαθμού 6.2. Γραφική Παράσταση Συνάρτησης
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 4
Κωδικός Θέματος: 37206
Ύλη: 3.3. Εξισώσεις 2ου Βαθμού 6.2. Γραφική Παράσταση Συνάρτησης
Τελευταία Ενημέρωση: 27-Σεπ-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 4

Δίνονται οι συναρτήσεις \(f(x)=x^{2}+3x+2\) και \(g(x)=x+1\), \(x\in \mathbb{R}\)

α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων \(f\), \(g\) έχουν ένα μόνο κοινό σημείο, το οποίο στη συνέχεια να προσδιορίσετε.
(Μονάδες 10)

β) Δίνεται η συνάρτηση \(h(x)=x+a\). Να δείξετε ότι:

  1. Αν \(a>1\), τότε οι γραφικές παραστάσεις των συναρτήσεων \(f\), \(h\) έχουν δύο κοινά σημεία.
  2. Αν \(a<1\), τότε οι γραφικές παραστάσεις των συναρτήσεων \(f\), \(h\) δεν έχουν κοινά σημεία.

(Μονάδες 15)

ΛΥΣΗ

α) Οι τετμημένες των σημείων τομής των \(C_{f}\), \(C_{g}\) αποτελούν λύσεις της εξίσωσης \(f(x)=g(x)\). Τότε:

$$f(x)=g(x) $$ $$\Leftrightarrow x^{2}+3x+2=x+1 $$ $$\Leftrightarrow x^{2}+2x+1=0 $$ $$\Leftrightarrow (x+1)^{2}=0 $$ $$\Leftrightarrow x+1=0 $$ $$\Leftrightarrow x=-1$$

Άρα οι \(C_{f}\), \(C_{g}\) έχουν μόνο ένα κοινό σημείο, το \(A(-1,g(-1))\) δηλαδή το \(A(-1,0)\). (η ευθεία εφάπτεται της παραβολής).

β) Οι τετμημένες των κοινών σημείων των \(C_{f}\), \(C_{h}\) είναι λύσεις της εξίσωσης \(f(x)=h(x)\). Δηλαδή:

$$f(x)=h(x) $$ $$\Leftrightarrow x^{2}+3x+2=x+a$$ $$\Leftrightarrow x^{2}+2x+(2-a)=0,\ \ a\in \mathbb{R}\ \ \ \ (1)$$

Το τριώνυμο έχει διακρίνουσα:

$$Δ=2^{2}-4\cdot 1\cdot (2-a)$$ $$=4-8+4a$$ $$=4a-4$$ $$=4(a-1)$$

  1. Αν \(a>1\) τότε \(Δ>0\) και η εξίσωση \((1)\) έχει δύο ρίζες άνισες το οποίο σημαίνει ότι οι γραφικές παραστάσεις των \(f\), \(h\) έχουν δύο κοινά σημεία.
  2. Αν \(a<1\) τότε \(Δ<0\) και η εξίσωση \((1)\) δεν έχει πραγματικές ρίζες το οποίο σημαίνει ότι οι γραφικές παραστάσεις των \(f\), \(h\) δεν έχουν κοινά σημεία.