Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Είστε Μαθηματικός;
Ελάτε στην ομάδα του ΜΕΘΟΔΙΚΟΥ
Ελάτε στην ομάδα του ΜΕΘΟΔΙΚΟΥ
Ευκαιρίες Απασχόλησης
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 11471 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 14306 | Θέμα: | 2 | |
Τελευταία Ενημέρωση: | 12-Μαρ-2024 | Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.4. Ρίζες Πραγματικών Αριθμών 6.1. Η Έννοια της Συνάρτησης 6.2. Γραφική Παράσταση Συνάρτησης | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Α' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 2 | ||
Κωδικός Θέματος: | 14306 | ||
Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.4. Ρίζες Πραγματικών Αριθμών 6.1. Η Έννοια της Συνάρτησης 6.2. Γραφική Παράσταση Συνάρτησης | ||
Τελευταία Ενημέρωση: 12-Μαρ-2024 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 2
α) Να λύσετε την ανίσωση \(|y-3|<1\).
(Μονάδες 12)
β) Αν \(x\), \(y\) είναι τα μήκη των πλευρών ενός ορθογωνίου με \(1<x<3\) και \(2<y<4\), τότε να βρείτε μεταξύ ποιών τιμών κυμαίνεται η τιμή του εμβαδού \(Ε\) του ορθογωνίου.
(Μονάδες 13)
ΛΥΣΗ
α) Είναι:
$$|y-3|<1 $$ $$\Leftrightarrow -1 < y-3 < 1 $$ $$\Leftrightarrow 2 < y < 4 $$
β) Το εμβαδόν ενός ορθογωνίου με διαστάσεις \(x\), \(y\) είναι: \(Ε=xy\).
Έχουμε:
$$\left\{ \eqalign{ 1 < x < 3 \\ 2 < y < 4}\right\} \overset{(\cdot)}{ \Rightarrow }$$ $$\Rightarrow 2 < xy <12 $$
Άρα \(2<Ε<12\).