Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 7169 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 33892 | Θέμα: | 4 | |
Τελευταία Ενημέρωση: | 06-Οκτ-2023 | Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.1. Ανισώσεις 1ου Βαθμού 4.2. Ανισώσεις 2ου Βαθμού | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Α' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 4 | ||
Κωδικός Θέματος: | 33892 | ||
Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.1. Ανισώσεις 1ου Βαθμού 4.2. Ανισώσεις 2ου Βαθμού | ||
Τελευταία Ενημέρωση: 06-Οκτ-2023 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 4
α) Να λύσετε την ανίσωση
(Μονάδες 8)
β) Να λύσετε την ανίσωση
(Μονάδες 5)
γ) Δίνεται το παρακάτω ορθογώνιο με πλευρές

Ο αριθμός
Να δείξετε ότι
.
(Μονάδες 7)Να βρείτε μεταξύ ποιων αριθμών κυμαίνεται η περίμετρος του ορθογωνίου.
(Μονάδες 5)
ΛΥΣΗ
α) Το τριώνυμο

Οπότε η ανίσωση
β) Έχουμε ισοδύναμα:
γ)
Ο αριθμός
ικανοποιεί τη σχέση , οπότε από το β) ερώτημα (απορρίπτονται οι τιμές αυτές γιατί , ως πλευρά) ή .Για το εμβαδόν
του ορθογωνίου ισχύει:Από το α) ερώτημα και επειδή
, η ανίσωση αληθεύει για .Από τις σχέσεις
και προκύπτει .Η περίμετρος του ορθογωνίου είναι
.
Έχουμε:Άρα η περίμετρος του ορθογωνίου κυμαίνεται μεταξύ των αριθμών
και .