Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 6410 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 34157 Θέμα: 2
Τελευταία Ενημέρωση: 10-Μαΐ-2023 Ύλη: 2.1. Οι Πράξεις και οι Ιδιότητές τους 2.4. Ρίζες Πραγματικών Αριθμών
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 2
Κωδικός Θέματος: 34157
Ύλη: 2.1. Οι Πράξεις και οι Ιδιότητές τους 2.4. Ρίζες Πραγματικών Αριθμών
Τελευταία Ενημέρωση: 10-Μαΐ-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 2

Αν είναι \(Α=2-\sqrt{3}\), \(Β=2+\sqrt{3}\), τότε:

α) Να αποδείξετε ότι \(A\cdot B=1\).
(Μονάδες 12)

β) Να υπολογίσετε την τιμή της παράστασης \(Π=Α^{2}+Β^{2}\).
(Μονάδες 13)

α) Είναι:

\begin{align} A\cdot B & =(2-\sqrt{3})(2+\sqrt{3})\\ & =2^{2}-(\sqrt{3})^{2}\\ & =4-3 \\ &=1\end{align}

β) Ισχύει ότι:

\begin{align} Π & =A^{2}+B^{2}\\ &=(2-\sqrt{3})^{2}+(2+\sqrt{3})^{2}\\ &=2^{2}-2\cdot 2\sqrt{3}+(\sqrt{3})^{2}+2^{2}+2\cdot 2\sqrt{3}+(\sqrt{3})^{2}\\ &=4+3+4+3\\ &=14\end{align}