Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 6283 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 34312 | Θέμα: | 4 | |
Τελευταία Ενημέρωση: | 05-Μαρ-2023 | Ύλη: | 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 3.1. Εξισώσεις 1ου Βαθμού 4.1. Ανισώσεις 1ου Βαθμού 6.1. Η Έννοια της Συνάρτησης 6.2. Γραφική Παράσταση Συνάρτησης | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Α' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 4 | ||
Κωδικός Θέματος: | 34312 | ||
Ύλη: | 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 3.1. Εξισώσεις 1ου Βαθμού 4.1. Ανισώσεις 1ου Βαθμού 6.1. Η Έννοια της Συνάρτησης 6.2. Γραφική Παράσταση Συνάρτησης | ||
Τελευταία Ενημέρωση: 05-Μαρ-2023 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 4
Στο παρακάτω σχήμα, δίνονται οι γραφικές παραστάσεις
και
με

α) Με βάση το σχήμα, να εκτιμήσετε την τιμή των συντεταγμένων των σημείων τομής γραφικών παραστάσεων
(Μονάδες 6)
β) Να επιβεβαιώσετε αλγεβρικά την απάντησή σας στο ερώτημα α).
(Μονάδες 8)
γ) Με τη βοήθεια των γραφικών παραστάσεων να βρείτε για ποιες τιμές του
(Μονάδες 6)
δ) Με τη βοήθεια του ερωτήματος γ), να βρείτε για ποιες τιμές του
(Μονάδες 5)
ΛΥΣΗ
α) Παρατηρώντας το σχήμα, διαπιστώνουμε ότι τα σημεία τομής των
β) Οι συναρτήσεις
δηλαδή της:
Για:
είναι:
και η
Για
Άρα, το σημείο τομής είναι το
Για:
είναι:
και η
Για
Άρα, το σημείο τομής είναι το
γ) Από το διάγραμμα που δίνεται διαπιστώνουμε ότι η
δ) Η παράσταση
Επομένως αναζητούμε τα διαστήματα στα οποία