Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 9712 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 34319 Θέμα: 4
Τελευταία Ενημέρωση: 27-Σεπ-2023 Ύλη: 3.3. Εξισώσεις 2ου Βαθμού 4.2. Ανισώσεις 2ου Βαθμού
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 4
Κωδικός Θέματος: 34319
Ύλη: 3.3. Εξισώσεις 2ου Βαθμού 4.2. Ανισώσεις 2ου Βαθμού
Τελευταία Ενημέρωση: 27-Σεπ-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 4

Θεωρούμε το τριώνυμο f(x)=3x2+κx4, με παράμετρο κR.

α) Να αποδείξετε ότι για οποιαδήποτε τιμή του κ, το τριώνυμο έχει δύο ρίζες πραγματικές και άνισες.
(Μονάδες 10)

β) Οι ρίζες του τριωνύμου είναι ομόσημες ή ετερόσημες; Να αιτιολογήσετε την απάντησή σας.
(Μονάδες 5)

γ) Αν x1 και x2 είναι οι ρίζες του τριωνύμου και α, β είναι δύο πραγματικοί αριθμοί τέτοιοι ώστε να ισχύει:

α<x1<x2<β

να προσδιορίσετε το πρόσημο του γινομένου αf(α)βf(β). Να αιτιολογήσετε την απάντησή σας.
(Μονάδες 10)

ΛΥΣΗ

α) Το τριώνυμο f(x)=3x2+κx4 έχει διακρίνουσα:
Δ=κ243(4)=κ2+48>0, για κάθε κR
Άρα το τριώνυμο έχει για οποιαδήποτε τιμή του κ δύο ρίζες πραγματικές και άνισες.

β) Για το γινόμενο των ριζών έχουμε:

P=x1x2 =γα =43<0

Άρα, οι ρίζες είναι ετερόσημες.

γ) Επειδή x1<x2 και οι ρίζες είναι ετερόσημες, ισχύει ότι:

x1<0<x2

Επίσης είναι α<x1 και x2<β. Άρα:

α<0  και  0<β    (1)

Το πρόσημο του τριωνύμου φαίνεται στον παρακάτω πίνακα:

Από τον πίνακα προσήμου συμπεραίνουμε ότι:

α<x1 f(α)>0  και  x2<β f(β)>0    (2)

Από τις ανισώσεις (1) και (2) βρίσκουμε ότι:

αf(α)βf(β)<0