Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 5319 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 36676 | Θέμα: | 4 | |
Τελευταία Ενημέρωση: | 01-Νοε-2023 | Ύλη: | 3.3. Εξισώσεις 2ου Βαθμού 6.1. Η Έννοια της Συνάρτησης 6.2. Γραφική Παράσταση Συνάρτησης | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Α' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 4 | ||
Κωδικός Θέματος: | 36676 | ||
Ύλη: | 3.3. Εξισώσεις 2ου Βαθμού 6.1. Η Έννοια της Συνάρτησης 6.2. Γραφική Παράσταση Συνάρτησης | ||
Τελευταία Ενημέρωση: 01-Νοε-2023 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 4
Δίνονται οι συναρτήσεις
α) Να αποδείξετε ότι η γραφική παράσταση της
(Μονάδες 7)
β) Αν οι γραφικές παραστάσεις των
Να αποδείξετε ότι
.
(Μονάδες 4)Για
υπάρχει άλλο σημείο τομής των γραφικών παραστάσεων των και ; Αιτιολογήστε την απάντησή σας.
(Μονάδες 4)
γ) Να αποδείξετε ότι το πλήθος των κοινών σημείων των γραφικών παραστάσεων των
(Μονάδες 10)
ΛΥΣΗ
α) Η γραφική παράσταση της
Είναι
β) Αφού οι γραφικές παραστάσεις των
- Είναι
Για
έχουμε καιΗ συνάρτηση
έχει πεδίο ορισμού το και η το . Οι τετμημένες των κοινών σημείων των και είναι οι λύσεις της εξίσωσης . Είναι:Επομένως δεν υπάρχει άλλο κοινό σημείο εκτός από αυτό με τετμημένη
.
γ) Το πλήθος των κοινών σημείων των γραφικών παραστάσεων των
Η παραπάνω εξίσωση είναι 2ου βαθμού και το πλήθος των ριζών της εξαρτάται από το πρόσημο της διακρίνουσάς της:
Για
Για
Για