Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 5008 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 36677 Θέμα: 4
Τελευταία Ενημέρωση: 13-Νοε-2023 Ύλη: 5.2. Αριθμητική πρόοδος 5.3. Γεωμετρική πρόοδος
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 4
Κωδικός Θέματος: 36677
Ύλη: 5.2. Αριθμητική πρόοδος 5.3. Γεωμετρική πρόοδος
Τελευταία Ενημέρωση: 13-Νοε-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 4

Μια οικογένεια, προκειμένου να χρηματοδοτήσει τις σπουδές του παιδιού της, έχει να επιλέξει μεταξύ δυο προγραμμάτων που της προτείνονται:

Για το πρόγραμμα Α πρέπει να καταθέσει τον 1ο μήνα 1 ευρώ, το 2ο μήνα 2 ευρώ, τον 3ο μήνα 4 ευρώ και γενικά, κάθε μήνα που περνάει, πρέπει να καταθέτει ποσό διπλάσιο από αυτό που κατέθεσε τον προηγούμενο μήνα.

Για το πρόγραμμα Β πρέπει να καταθέσει τον 1ο μήνα 100 ευρώ, το 2ο μήνα 110 ευρώ, τον 3ο μήνα 120 ευρώ και γενικά, κάθε μήνα που περνάει πρέπει να καταθέτει ποσό κατά 10 ευρώ μεγαλύτερο από εκείνο που κατέθεσε τον προηγούμενο μήνα.

α) Να βρείτε:

  1. το ποσό αν που πρέπει να κατατεθεί στο λογαριασμό τον νο (νιοστό) μήνα σύμφωνα με το πρόγραμμα Α.
    (Μονάδες 4)

  2. το ποσό βν που πρέπει να κατατεθεί στο λογαριασμό τον νο μήνα σύμφωνα με το πρόγραμμα Β.
    (Μονάδες 4)

  3. το ποσό Αν που θα υπάρχει στο λογαριασμό μετά από ν μήνες σύμφωνα με το πρόγραμμα Α.
    (Μονάδες 5)

  4. το ποσό Βν που θα υπάρχει στο λογαριασμό μετά από ν μήνες σύμφωνα με το πρόγραμμα Β.
    (Μονάδες 5)

β)

  1. Τι ποσό θα υπάρχει στο λογαριασμό μετά τους πρώτους 6 μήνες, σύμφωνα με κάθε πρόγραμμα;
    (Μονάδες 3)

  2. Αν κάθε πρόγραμμα ολοκληρώνεται σε 12 μήνες, με ποιο από τα δύο προγράμματα το συνολικό ποσό που θα συγκεντρωθεί θα είναι μεγαλύτερο;
    (Μονάδες 4)

ΛΥΣΗ

α) Από τα δεδομένα προκύπτει ότι:

  1. το πρόγραμμα Α περιγράφεται από μια γεωμετρική πρόοδο με α1=1, α2=2, α3=4 και λ=2. Ισχύει επομένως ότι:

αν=α1λ1 =121=21

  1. το πρόγραμμα Β περιγράφεται από μια αριθμητική πρόοδο με β1=100, β2=110, β3=120 και ω=10. Ισχύει επομένως ότι:

βν=β1+(ν1)ω =100+(ν1)10 =100+10ν10 =10ν+90

  1. Το ποσό που θα υπάρχει μετά από ν μήνες σύμφωνα με το πρόγραμμα Α θα είναι:

Αν=α1λν1λ1 =12ν121 =2ν1

  1. Το ποσό που θα υπάρχει μετά από ν μήνες σύμφωνα με το πρόγραμμα Β θα είναι:

Βν=(β1+βν)ν2 =(100+10ν+90)ν2 =(10ν+190)ν2 =10ν2+190ν2 =5ν2+95ν

β)

  1. Το ποσό που θα υπάρχει, σύμφωνα με το πρόγραμμα Α, μετά από 6 μήνες, είναι:

    Α6=261=63 ευρώ

    Το ποσό που θα υπάρχει, σύμφωνα με το πρόγραμμα Β, μετά από 6 μήνες, είναι:

    Β6=562+956=180+570=750 ευρώ

  2. Το ποσό που θα υπάρχει, σύμφωνα με το πρόγραμμα Α, μετά από 12 μήνες, είναι:

    Α12=2121=4095 ευρώ

    Το ποσό που θα υπάρχει, σύμφωνα με το πρόγραμμα Β, μετά από 12 μήνες:

    Β12=5122+9512=720+1140=1860 ευρώ

    Επομένως, ακολουθώντας το πρόγραμμα Α, θα έχει συγκεντρώσει μεγαλύτερο ποσό.