Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 12186 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 36884 Θέμα: 2
Τελευταία Ενημέρωση: 13-Μαΐ-2023 Ύλη: 2.1. Οι Πράξεις και οι Ιδιότητές τους
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 2
Κωδικός Θέματος: 36884
Ύλη: 2.1. Οι Πράξεις και οι Ιδιότητές τους
Τελευταία Ενημέρωση: 13-Μαΐ-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 2

α) Να δείξετε ότι για οποιουσδήποτε πραγματικούς αριθμούς x,y ισχύει:

(x1)2+(y+3)2=x2+y22x+6y+10

(Μονάδες12)

β) Να βρείτε τους αριθμούς x, y, ώστε:

x2+y22x+6y+10=0

(Μονάδες13)

α) Έχουμε:

(x1)2+(y+3)2=(x22x+1)+(y2+6y+9)=x2+y22x+6y+10

β) Έχουμε ισοδύναμα:

x2+y22x+6y+10=0 (α)(x1)2+(y+3)2=0 x1=0 και y+3=0 x=1 και y=3