Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 10650 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 37181 Θέμα: 2
Τελευταία Ενημέρωση: 13-Μαΐ-2023 Ύλη: 3.3. Εξισώσεις 2ου Βαθμού
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 2
Κωδικός Θέματος: 37181
Ύλη: 3.3. Εξισώσεις 2ου Βαθμού
Τελευταία Ενημέρωση: 13-Μαΐ-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 2

Δίνεται η εξίσωση: x2(λ1)x+6=0,(1) με παράμετρο λR.

α) Αν η παραπάνω εξίσωση έχει λύση το 1, να βρείτε το λ.
(Μονάδες 13)

β) Για λ=2 να λύσετε την εξίσωση (1).
(Μονάδες 12)

α) Εφόσον η εξίσωση: x2(λ1)x+6=0, (1) έχει λύση το 1, ισχύει ότι:

12(λ1)1+6=0 1λ+1+6=0 8λ=0 λ=8

β) Για λ=2 η εξίσωση (1) γράφεται:

x2(21)x+6=0 x2x+6=0

Η διακρίνουσα, με α=1, β=1, γ=6 γίνεται:

Δ=β24αγ=(1)2416=124=23<0

Άρα η εξίσωση δεν έχει πραγματικές ρίζες για λ=2.