Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 6153 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 37193 Θέμα: 2
Τελευταία Ενημέρωση: 13-Μαΐ-2023 Ύλη: 2.4. Ρίζες Πραγματικών Αριθμών 4.1. Ανισώσεις 1ου Βαθμού
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 2
Κωδικός Θέματος: 37193
Ύλη: 2.4. Ρίζες Πραγματικών Αριθμών 4.1. Ανισώσεις 1ου Βαθμού
Τελευταία Ενημέρωση: 13-Μαΐ-2023
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 2

Δίνεται η παράσταση:

A=(x4+x+1)(x4x+1)

α) Για ποιες τιμές του x ορίζεται η παράσταση Α; Να αιτιολογήσετε την απάντησή σας.
(Μονάδες 12)

β) Να αποδείξετε ότι η παράσταση Α είναι σταθερή, δηλαδή ανεξάρτητη του x.
(Μονάδες 13)

α) Πρέπει να ισχύει

{x40και x+10 {x4και x1 x4 x[4,+)

β) Είναι:

A=(x4+x+1)(x4x+1)=(x4)2(x+1)2=x4(x+1)=x4x1=5

Επομένως πράγματι η παράσταση Α είναι σταθερή, ανεξάρτητη του x.