Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!

Τύπος Σχολείου: Γενικό Λύκειο Πηγή: Ι.Ε.Π. Αναγνώσθηκε: 10066 φορές Επικοινωνία
Μάθημα: Άλγεβρα Τάξη: Α' Λυκείου
Κωδικός Θέματος: 34323 Θέμα: 4
Τελευταία Ενημέρωση: 23-Μαρ-2024 Ύλη: 2.2. Διάταξη Πραγματικών Αριθμών 3.3. Εξισώσεις 2ου Βαθμού 4.2. Ανισώσεις 2ου Βαθμού
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
Τύπος Σχολείου: Γενικό Λύκειο
Τάξη: Α' Λυκείου
Μάθημα: Άλγεβρα
Θέμα: 4
Κωδικός Θέματος: 34323
Ύλη: 2.2. Διάταξη Πραγματικών Αριθμών 3.3. Εξισώσεις 2ου Βαθμού 4.2. Ανισώσεις 2ου Βαθμού
Τελευταία Ενημέρωση: 23-Μαρ-2024
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida)
ΘΕΜΑ 4

Δίνεται το τριώνυμο:

f(x)=x2x+(λλ2) , λR

α) Να βρείτε τη διακρίνουσα Δ του τριωνύμου και να αποδείξετε ότι το τριώνυμο έχει πραγματικές ρίζες για κάθε λR.
(Μονάδες 10)

β) Για ποια τιμή του λ το τριώνυμο έχει δύο ίσες ρίζες;
(Μονάδες 6)

γ) Αν λ12 και x1, x2 οι ρίζες του παραπάνω τριωνύμου με x1<x2, τότε:
i. να αποδείξετε ότι x1<x1+x22<x2,
(Μονάδες 4)

ii. να βρείτε το πρόσημο του τριωνύμου και να διατάξετε από τον μικρότερο προς τον μεγαλύτερο τους αριθμούς:

f(x2),f(x1+x22),f(x2+1)

(Μονάδες 5)

ΛΥΣΗ

α) Το τριώνυμο x2x+(λλ2) έχει α=1, β=1, γ=λλ2 και διακρίνουσα:

Δ=β24αγ =(1)241(λλ2) =14λ+4λ2 =(12λ)20

Επειδή Δ0, για κάθε λR το τριώνυμο έχει πραγματικές ρίζες.

β) Το τριώνυμο έχει δύο πραγματικές ρίζες ίσες αν και μόνο αν:

Δ=0 (12λ)2=0 12λ=0 λ=12

γ)
i. Η σχέση x1<x1+x22<x2 ισοδύναμα γράφεται:

(x1<x1+x22  και  x1+x22<x2) (2x1<x1+x2  και  x1+x2<2x2) x1<x2

που ισχύει από υπόθεση.

iii. Το πρόσημο του τριωνύμου φαίνεται στον παρακάτω πίνακα:

Είναι:

f(x2)=0,f(x1+x22)<0  και  f(x2+1)>0

Άρα:

f(x1+x22)<f(x2)<f(x2+1)