Για να εκτυπώσετε το Θέμα πατήστε "Εκτύπωση"!
Είστε Μαθηματικός;
Ελάτε στην ομάδα του ΜΕΘΟΔΙΚΟΥ
Ελάτε στην ομάδα του ΜΕΘΟΔΙΚΟΥ
Ευκαιρίες Απασχόλησης
Τύπος Σχολείου: | Γενικό Λύκειο | Πηγή: Ι.Ε.Π. | Αναγνώσθηκε: 5971 φορές Επικοινωνία | |
---|---|---|---|---|
Μάθημα: | Άλγεβρα | Τάξη: | Α' Λυκείου | |
Κωδικός Θέματος: | 35044 | Θέμα: | 2 | |
Τελευταία Ενημέρωση: | 16-Μαρ-2023 | Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.1. Ανισώσεις 1ου Βαθμού | |
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
Τύπος Σχολείου: | Γενικό Λύκειο | ||
---|---|---|---|
Τάξη: | Α' Λυκείου | ||
Μάθημα: | Άλγεβρα | ||
Θέμα: | 2 | ||
Κωδικός Θέματος: | 35044 | ||
Ύλη: | 2.2. Διάταξη Πραγματικών Αριθμών 2.3. Απόλυτη Τιμή Πραγματικού Αριθμού 4.1. Ανισώσεις 1ου Βαθμού | ||
Τελευταία Ενημέρωση: 16-Μαρ-2023 | |||
Το θέμα προέρχεται και αντλήθηκε από την πλατφόρμα της Τράπεζας Θεμάτων Διαβαθμισμένης Δυσκολίας που αναπτύχθηκε (MIS5070818-Tράπεζα θεμάτων Διαβαθμισμένης Δυσκολίας για τη Δευτεροβάθμια Εκπαίδευση, Γενικό Λύκειο-ΕΠΑΛ) και είναι διαδικτυακά στο δικτυακό τόπο του Ινστιτούτου Εκπαιδευτικής Πολιτικής (Ι.Ε.Π.) στη διεύθυνση (http://iep.edu.gr/el/trapeza-thematon-arxiki-selida) |
ΘΕΜΑ 2
Δίνονται οι πραγματικοί αριθμοί \(y\), για τους οποίους ισχύει: \(|y-2|<1\).
α) Να αποδείξετε ότι: \(y\in (1,3)\).
(Μονάδες 12)
β) Να απλοποιήσετε την παράσταση: \(Κ=\dfrac{|y-1|+|y-3|}{2}\).
(Μονάδες 13)
ΛΥΣΗ
α) Είναι:
$$|y-2|<1 $$ $$\Leftrightarrow -1 < y-2 < 1$$ $$\Leftrightarrow -1+2 < y-2+2 < 1+2$$ $$\Leftrightarrow 1 < y < 3$$ $$\Leftrightarrow y\in (1,3)$$
β) Ισχύει ότι:
$$1 < y < 3$$ $$\Leftrightarrow \begin{cases} 1 < y \\ y < 3 \end{cases}$$ $$\Leftrightarrow \begin{cases} 0 < y-1 \\ y-3 < 0 \end{cases}$$
Άρα:
$$|y-1|=y-1$$
και:
$$|y-3|=-(y-3)=3-y$$
Τότε:
$$Κ=\dfrac{|y-1|+|y-3|}{2}$$ $$=\dfrac{y-1+3-y}{2}$$ $$=\dfrac{2}{2}=1$$